Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
1.
Front Immunol ; 15: 1330738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449868

RESUMO

Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.


Assuntos
HIV-1 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Poro Nuclear/genética , Repetição Terminal Longa de HIV/genética , Expressão Gênica
2.
PLoS One ; 19(3): e0298542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457474

RESUMO

Drug-based antiretroviral therapies (ART) efficiently suppress HIV replication in humans, but the virus persists as integrated proviral reservoirs in small numbers of cells. Importantly, ART cannot eliminate HIV from an infected individual, since it does not target the integrated provirus. Therefore, genome editing-based strategies that can inactivate or excise HIV genomes would provide the technology for novel curative therapies. In fact, the HIV-1 LTR-specific designer-recombinase Brec1 has been shown to remove integrated proviruses from infected cells and is highly efficacious on clinical HIV-1 isolates in vitro and in vivo, suggesting that Brec1 has the potential for clinical development of advanced HIV-1 eradication strategies in people living with HIV. In line with the preparation of a first-in-human advanced therapy medicinal product gene therapy trial, we here present an extensive preclinical evaluation of Brec1 and lentiviral vectors expressing the Brec1 transgene. This included detailed functional analysis of potential genomic off-target sites, assessing vector safety by investigating vector copy number (VCN) and the risk for potential vector-related insertional mutagenesis, as well as analyzing the potential of Brec1 to trigger an undesired strong T cell immune response. In conclusion, the antiviral designer-recombinase Brec1 is shown to lack any detectable cytopathic, genotoxic or T cell-related immunogenic effects, thereby meeting an important precondition for clinical application of the therapeutic lentiviral vector LV-Brec1 in novel HIV-1 curative strategies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Recombinases/metabolismo , HIV-1/fisiologia , Provírus/genética , Repetição Terminal Longa de HIV/genética , Infecções por HIV/terapia , Vetores Genéticos/genética
3.
J Virol ; 98(2): e0182523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289105

RESUMO

Unspliced HIV-1 RNAs function as messenger RNAs for Gag or Gag-Pol polyproteins and progeny genomes packaged into virus particles. Recently, it has been reported that fate of the RNAs might be primarily determined, depending on transcriptional initiation sites among three consecutive deoxyguanosine residues (GGG tract) downstream of TATA-box in the 5' long terminal repeat (LTR). Although HIV-1 RNA transcription starts mostly from the first deoxyguanosine of the GGG tract and often from the second or third deoxyguanosine, RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine, were predominant in HIV-1 particles. Despite selective packaging of G1-form RNAs into virus particles, its biological impact during viral replication remains to be determined. In this study, we revealed that G1-form RNAs are primarily selected as a template for provirus DNA rather than other RNAs. In competitions between HIV-1 and lentiviral vector transcripts in virus-producing cells, approximately 80% of infectious particles were found to generate provirus using HIV-1 transcripts, while lentiviral vector transcripts were conversely selected when we used HIV-1 mutants in which the third deoxyguanosine in the GGG tract was replaced with deoxythymidine or deoxycytidine (GGT or GGC mutants, respectively). In the other analyses of proviral sequences after infection with an HIV-1 mutant in which the GGG tract in 3' LTR was replaced with TTT, most proviral sequences of the GGG-tract region in 5' LTR were found to be TTG, which is reasonably generated using the G1-form transcripts. Our results indicate that the G1-form RNAs serve as a dominant genome to establish provirus DNA.IMPORTANCESince the promoter for transcribing HIV-1 RNA is unique, all viral elements including genomic RNA and viral proteins have to be generated by the unique transcripts through ingenious mechanisms including RNA splicing and frameshifting during protein translation. Previous studies suggested a new mechanism for diversification of HIV-1 RNA functions by heterogeneous transcriptional initiation site usage; HIV-1 RNAs whose transcription initiates from a certain nucleotide were predominant in virus particles. In this study, we established two methods to analyze heterogenous transcriptional initiation site usage by HIV-1 during viral infection and showed that RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine of the GGG tract in 5' LTR, were primarily selected as viral genome in infectious particles and thus are used as a template to generate provirus for continuous replication. This study provides insights into the mechanism for diversification of unspliced RNA functions and requisites of lentivirus infectivity.


Assuntos
HIV-1 , Provírus , Desoxiguanosina/genética , Guanosina/genética , Repetição Terminal Longa de HIV/genética , HIV-1/fisiologia , Provírus/genética , RNA Viral/genética , Sequências Repetidas Terminais
4.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991365

RESUMO

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Assuntos
Coinfecção , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1 , HIV-2 , Interferons , RNA Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/imunologia , HIV-2/genética , HIV-2/imunologia , HIV-2/metabolismo , RNA Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Interferons/imunologia , Regiões Promotoras Genéticas/genética , Ligação Competitiva , RNA Polimerase II/metabolismo , Transcrição Gênica
5.
PLoS Pathog ; 19(6): e1011194, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37307292

RESUMO

A genetic bottleneck is a hallmark of HIV-1 transmission such that only very few viral strains, termed transmitted/founder (T/F) variants establish infection in a newly infected host. Phenotypic characteristics of these variants may determine the subsequent course of disease. The HIV-1 5' long terminal repeat (LTR) promoter drives viral gene transcription and is genetically identical to the 3' LTR. We hypothesized that HIV-1 subtype C (HIV-1C) T/F virus LTR genetic variation is a determinant of transcriptional activation potential and clinical disease outcome. The 3'LTR was amplified from plasma samples of 41 study participants acutely infected with HIV-1C (Fiebig stages I and V/VI). Paired longitudinal samples were also available at one year post-infection for 31 of the 41 participants. 3' LTR amplicons were cloned into a pGL3-basic luciferase expression vector, and transfected alone or together with Transactivator of transcription (tat) into Jurkat cells in the absence or presence of cell activators (TNF-α, PMA, Prostratin and SAHA). Inter-patient T/F LTR sequence diversity was 5.7% (Renge: 2-12) with subsequent intrahost viral evolution observed in 48.4% of the participants analyzed at 12 months post-infection. T/F LTR variants exhibited differential basal transcriptional activity, with significantly higher Tat-mediated transcriptional activity compared to basal (p<0.001). Basal and Tat-mediated T/F LTR transcriptional activity showed significant positive correlation with contemporaneous viral loads and negative correlation with CD4 T cell counts (p<0.05) during acute infection respectively. Furthermore, Tat-mediated T/F LTR transcriptional activity significanly correlated positively with viral load set point and viral load; and negatively with CD4 T cell counts at one year post infection (all p<0.05). Lastly, PMA, Prostratin, TNF-α and SAHA cell stimulation resulted in enhanced yet heterologous transcriptional activation of different T/F LTR variants. Our data suggest that T/F LTR variants may influence viral transcriptional activity, disease outcomes and sensitivity to cell activation, with potential implications for therapeutic interventions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Ativação Transcricional , HIV-1/fisiologia , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Fator de Necrose Tumoral alfa/metabolismo , Repetição Terminal Longa de HIV/genética , Variação Genética , Infecções por HIV/genética , Regulação Viral da Expressão Gênica
6.
Nat Commun ; 14(1): 3343, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291137

RESUMO

Tripartite motif-containing protein 5α (TRIM5α) is generally known to block the postentry events of HIV-1. Here, we report an uncharacterized role for TRIM5α in the maintenance of viral latency. Knockdown of TRIM5α potentiates the transcription of HIV-1 in multiple latency models, which is reversed by shRNA-resistant TRIM5α. TRIM5α suppresses TNFα-activated HIV-1 LTR-driven as well as NF-κB- and Sp1-driven gene expression, with the RING and B-box 2 domains being the essential determinants. Mechanistically, TRIM5α binds to and enhances the recruitment of histone deacetylase 1 (HDAC1) to NF-κB p50 and Sp1. ChIP‒qPCR analyses further reveal that the association of TRIM5α with HIV-1 LTR induces HDAC1 recruitment and local H3K9 deacetylation. Conserved suppression effects of TRIM5α orthologs from multiple species on both HIV-1 and endo-retroelement HERV-K LTR activities have also been demonstrated. These findings provide new insights into the molecular mechanisms by which proviral latency is initially established and activatable proviruses are resilenced by histone deacetylase recruitment.


Assuntos
HIV-1 , NF-kappa B , NF-kappa B/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/metabolismo , Regiões Promotoras Genéticas , Proteínas com Motivo Tripartido/genética
7.
AIDS Res Hum Retroviruses ; 39(9): 500-504, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183419

RESUMO

HIV-1 provirus is flanked by one long terminal repeat (LTR) at each terminal. The 5' LTR plays important roles in HIV-1 life cycle, especially, it determines HIV-1 transcription. However, there are 810 5' LTR entries exist in the HIV-1 sequence database, accounting for only 0.085% (810/949,484). In this study, we collected plasma samples from HIV-1-infected patients in Shenzhen province and got 219 5' LTR sequences. In addition, we found recombination in the LTR region. The recombinants (LS13145, LS11614, LS14862, and LS14863) possess an insertion of CRF01_AE segment at HXB2 482-630 bp (149 bp) in the skeleton of 5' LTR of subtype C. At the same time, our study found that the occurrence of recombination caused changes in many transcription factor binding sites. As the increasing investigation on 5' LTRs diversity and characterization, we will get a deeper understanding of HIV-1 transmission, evolution, and the basic mechanism of transcriptional regulation.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/epidemiologia , Recombinação Genética , Repetição Terminal Longa de HIV/genética , HIV-1/genética , China/epidemiologia , Filogenia
8.
Nature ; 617(7962): 835-841, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198487

RESUMO

Cellular processes are the product of interactions between biomolecules, which associate to form biologically active complexes1. These interactions are mediated by intermolecular contacts, which if disrupted, lead to alterations in cell physiology. Nevertheless, the formation of intermolecular contacts nearly universally requires changes in the conformations of the interacting biomolecules. As a result, binding affinity and cellular activity crucially depend both on the strength of the contacts and on the inherent propensities to form binding-competent conformational states2,3. Thus, conformational penalties are ubiquitous in biology and must be known in order to quantitatively model binding energetics for protein and nucleic acid interactions4,5. However, conceptual and technological limitations have hindered our ability to dissect and quantitatively measure how conformational propensities affect cellular activity. Here we systematically altered and determined the propensities for forming the protein-bound conformation of HIV-1 TAR RNA. These propensities quantitatively predicted the binding affinities of TAR to the RNA-binding region of the Tat protein and predicted the extent of HIV-1 Tat-dependent transactivation in cells. Our results establish the role of ensemble-based conformational propensities in cellular activity and reveal an example of a cellular process driven by an exceptionally rare and short-lived RNA conformational state.


Assuntos
Repetição Terminal Longa de HIV , HIV-1 , Conformação de Ácido Nucleico , RNA Viral , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Repetição Terminal Longa de HIV/genética , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/genética , HIV-1/metabolismo
9.
Retrovirology ; 20(1): 10, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254203

RESUMO

BACKGROUND: Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus. RESULTS: In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes. CONCLUSIONS: Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.


Assuntos
HIV-1 , Humanos , HIV-1/genética , Guanina , Fatores de Transcrição/genética , Cromatina , Repetição Terminal Longa de HIV/genética , Transcrição Gênica
10.
Proc Natl Acad Sci U S A ; 120(1): e2217476120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584296

RESUMO

HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones. Chromatin immunoprecipitation analysis confirmed the presence of p32 on active HIV promoters and its enhanced recruitment by Tat. HIV uses Tat to efficiently recruit positive transcription elongation factor b (p-TEFb) (CDK9/CCNT1) to TAR, an RNA secondary structure that forms from the first 59 bp of HIV transcripts, to enhance RNAPII transcriptional elongation. The RNA interference of p32 significantly reduced HIV transcription in primary CD4+T cells and in HIV chronically infected cells, independently of either HIV splicing or p32 anti-splicing activity. Conversely, overexpression of p32 specifically increased Tat-dependent HIV transcription. p32 was found to directly interact with Tat's basic domain enhancing Tat stability and half-life. Conversely, p32 associates with Tat via N- and C-terminal domains. Likely due its scaffold properties, p32 also promoted Tat association with TAR, p-TEFb, and RNAPII enhancing Tat-dependent HIV transcription. In sum, we identified p32 as a host factor that interacts with and stabilizes Tat protein, promotes Tat-dependent transcriptional regulation, and may be explored for HIV-targeted transcriptional inhibition.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , HIV-1/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Chaperonas Moleculares/metabolismo , Infecções por HIV/genética , Transcrição Gênica , Repetição Terminal Longa de HIV/genética
11.
Nucleic Acids Res ; 50(11): 6137-6153, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687115

RESUMO

Schlafen-5 (SLFN5) is an interferon-induced protein of the Schlafen family, which are involved in immune responses and oncogenesis. To date, little is known regarding its anti-HIV-1 function. Here, the authors report that overexpression of SLFN5 inhibits HIV-1 replication and reduces viral mRNA levels, whereas depletion of endogenous SLFN5 promotes HIV-1 replication. Moreover, they show that SLFN5 markedly decreases the transcriptional activity of HIV-1 long terminal repeat (LTR) via binding to two sequences in the U5-R region, which consequently represses the recruitment of RNA polymerase II to the transcription initiation site. Mutagenesis studies show the importance of nuclear localization and the N-terminal 1-570 amino acids fragment in the inhibition of HIV-1. Further mechanistic studies demonstrate that SLFN5 interacts with components of the PRC2 complex, G9a and Histone H3, thereby promoting H3K27me2 and H3K27me3 modification leading to silencing HIV-1 transcription. In concert with this, they find that SLFN5 blocks the activation of latent HIV-1. Altogether, their findings demonstrate that SLFN5 is a transcriptional repressor of HIV-1 through epigenetic modulation and a potential determinant of HIV-1 latency.


Assuntos
Proteínas de Ciclo Celular , Epigênese Genética , Infecções por HIV , HIV-1 , Proteínas de Ciclo Celular/genética , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Histonas/genética , Humanos , Ativação Viral , Latência Viral/genética , Replicação Viral/genética
12.
Viruses ; 14(5)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35632825

RESUMO

The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome-epigenetic immunity towards a cure.


Assuntos
Infecções por HIV , HIV-1 , Cromatina , Epigênese Genética , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Humanos
13.
J Immunol ; 208(7): 1700-1710, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264460

RESUMO

One key barrier to curative therapies for HIV is the limited understanding of HIV persistence. HIV provirus integration sites (ISs) within BACH2 are common, and almost all sites mapped to date are located upstream of the start codon in the same transcriptional orientation as the gene. These unique features suggest the possibility of insertional mutagenesis at this location. Using CRISPR/Cas9-based homology-directed repair in primary human CD4+ T cells, we directly modeled the effects of HIV integration within BACH2 Integration of the HIV long terminal repeat (LTR) and major splice donor increased BACH2 mRNA and protein levels, altered gene expression, and promoted selective outgrowth of an activated, proliferative, and T regulatory-like cell population. In contrast, introduction of the HIV-LTR alone or an HIV-LTR-major splice donor construct into STAT5B, a second common HIV IS, had no functional impact. Thus, HIV LTR-driven BACH2 expression modulates T cell programming and leads to cellular outgrowth and unique phenotypic changes, findings that support a direct role for IS-dependent HIV-1 persistence.


Assuntos
Sistemas CRISPR-Cas , HIV-1 , Fatores de Transcrição de Zíper de Leucina Básica/genética , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Humanos , Integração Viral
14.
FASEB J ; 36(3): e22184, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35113458

RESUMO

The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.


Assuntos
Astrócitos/virologia , Endocitose/genética , Endossomos/genética , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Lisossomos/genética , Ativação Transcricional/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica/genética , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Regiões Promotoras Genéticas/genética , Latência Viral/genética , Replicação Viral/genética
15.
Biophys J ; 120(23): 5158-5168, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34762866

RESUMO

Human immunodeficiency virus (HIV) is a retrovirus that progressively attacks the human immune system. It is known that the HIV viral protein Tat recruits the host elongation factor, positive transcription elongation factor b (P-TEFb), onto the nascent HIV viral transactivation response element (TAR) RNA to overcome the elongation pause for active transcription of the entire viral genome. Interestingly, there exists an amplifying feedback loop between Tat and TAR-a reduction in Tat increases the elongation pause, resulting in more TAR RNA fragments instead of the entire viral genome transcript, and the TAR fragments as a scaffold for PRC2 complex in turn promote Tat ubiquitination and degradation. In this study, the structural ensembles and binding dynamics of various interfaces in the Tat/TAR/P-TEFb complex are probed by all-atom accelerated sampling molecular dynamics simulations. The results show that a protein-binding inhibitor F07#13 targeting the Tat/P-TEFb interface initiates the above feedback loop and shuts down the active transcription. Another RNA binding inhibitor, JB181, targeting the Tat/TAR interface, can prevent TAR from pulling down the Tat from P-TEFb protein and further reducing Tat degradation. The detailed mechanism of the complex dynamics helps elucidate how Tat and TAR coordinate the regulation between HIV genome transcription versus possible HIV latency.


Assuntos
Repetição Terminal Longa de HIV , HIV-1 , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/metabolismo , Humanos , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Viral/genética , Transcrição Gênica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
16.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696435

RESUMO

The HIV-1 Tat protein interacts with TAR RNA and recruits CDK9/cyclin T1 and other host factors to induce HIV-1 transcription. Thus, Tat-TAR RNA interaction, which is unique for HIV-1, represents an attractive target for anti-HIV-1 therapeutics. To target Tat-TAR RNA interaction, we used a crystal structure of acetylpromazine bound to the bulge of TAR RNA, to dock compounds from the Enamine database containing over two million individual compounds. The docking procedure identified 173 compounds that were further analyzed for the inhibition of HIV-1 infection. The top ten inhibitory compounds with IC50 ≤ 6 µM were selected and the three least toxic compounds, T6780107 (IC50 = 2.97 µM), T0516-4834 (IC50 = 0.2 µM) and T5628834 (IC50 = 3.46 µM), were further tested for HIV-1 transcription inhibition. Only the T0516-4834 compound showed selective inhibition of Tat-induced HIV-1 transcription, whereas the T6780107 compound inhibited equally basal and Tat-induced transcription and the T5628834 compound only inhibited basal HIV-1 transcription. The compounds were tested for the inhibition of translation and showed minimal (<25%) effect. The T0516-4834 compound also showed the strongest inhibition of HIV-1 RNA expression and p24 production in CEM T cells and peripheral blood mononuclear cells infected with HIV-1 IIIB. Of the three compounds, only the T0516-4834 compound significantly disrupted Tat-TAR RNA interaction. Additionally, of the three tested compounds, T5628834 and, to a lesser extent, T0516-4834 disrupted Tat-CDK9/cyclin T1 interaction. None of the three compounds showed significant inhibition of the cellular CDK9 and cyclin T1 levels. In silico modelling showed that the T0516-4834 compound interacted with TAR RNA by binding to the bulge formed by U23, U25, C39, G26,C39 and U40 residues. Taken together, our study identified a novel benzoxazole compound that disrupted Tat-TAR RNA interaction and inhibited Tat-induced transcription and HIV-1 infection, suggesting that this compound might serve as a new lead for anti-HIV-1 therapeutics.


Assuntos
Infecções por HIV/prevenção & controle , Repetição Terminal Longa de HIV/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Infecções por HIV/genética , Repetição Terminal Longa de HIV/efeitos dos fármacos , Repetição Terminal Longa de HIV/fisiologia , HIV-1/genética , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Leucócitos Mononucleares/metabolismo , Simulação de Acoplamento Molecular , Fosforilação , Ligação Proteica/efeitos dos fármacos , RNA Viral/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
17.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680042

RESUMO

Green fluorescent protein (GFP) chromophore and its congeners draw significant attention mostly for bioimaging purposes. In this work we probed these compounds as antiviral agents. We have chosen LTR-III DNA G4, the major G-quadruplex (G4) present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), as the target for primary screening and designing antiviral drug candidates. The stabilization of this G4 was previously shown to suppress viral gene expression and replication. FRET-based high-throughput screening (HTS) of 449 GFP chromophore-like compounds revealed a number of hits, sharing some general structural features. Structure-activity relationships (SAR) for the most effective stabilizers allowed us to establish structural fragments, important for G4 binding. Synthetic compounds, developed on the basis of SAR analysis, exhibited high LTR-III G4 stabilization level. NMR spectroscopy and molecular modeling revealed the possible formation of LTR-III G4-ligand complex with one of the lead selective derivative ZS260.1 positioned within the cavity, thus supporting the LTR-III G4 attractiveness for drug targeting. Selected compounds showed moderate activity against HIV-I (EC50 1.78-7.7 µM) in vitro, but the activity was accompanied by pronounced cytotoxicity.


Assuntos
Quadruplex G , Proteínas de Fluorescência Verde/química , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/química , Proteínas de Fluorescência Verde/farmacologia , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Relação Estrutura-Atividade
18.
mBio ; 12(4): e0162521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465029

RESUMO

HIV-1 remains incurable due to viral reservoirs, which lead to durably latent HIV infection. Identifying novel host factors and deciphering the molecular mechanisms involved in the establishment and maintenance of latency are critical to discover new targets for the development of novel anti-HIV agents. Here, we show that ubiquitin-like with PHD and RING finger domain 1 (UHRF1) modulates HIV-1 5'-long terminal repeat (LTR)-driven transcription of the viral genome as a novel HIV-1 restriction factor. Correspondingly, UHRF1 depletion reversed the latency of HIV-1 proviruses. Mechanistically, UHRF1 competed with positive transcription factor b (p-TEFb) for the binding to the cysteine-rich motifs of HIV-1 Tat via its TTD, PHD, and RING finger domains. Furthermore, UHRF1 mediated K48-linked ubiquitination and proteasomal degradation of Tat in RING-dependent ways, leading to the disruption of Tat/cyclin T1/CDK9 complex and consequential impediment of transcription elongation. In summary, our findings revealed that UHRF1 is an important mediator of HIV-1 latency by controlling Tat-mediated transcriptional activation, providing novel insights on host-pathogen interaction for modulating HIV-1 latency, beneficial for the development of anti-AIDS therapies. IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. In our work, we identified a critical role of host factor ubiquitin-like with PHD and RING finger domain 1 (UHRF1) in HIV-1 latency via the modulation of the viral protein Tat stability. By disrupting the Tat/cyclin T1/CDK9 complex, UHRF1 promotes the suppression of HIV-1 transcription and maintenance of HIV-1 latency. Our findings provide novel insights in controlling Tat expression via host-pathogen interaction for modulating HIV-1 latency. Based on our results, modulating UHRF1 expression or activity by specific inhibitors is a potential therapeutic strategy for latency reversal in HIV-1 patients.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , HIV-1/genética , Fator B de Elongação Transcricional Positiva/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Latência Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células HEK293 , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , Humanos , Células Jurkat , Fator B de Elongação Transcricional Positiva/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Provírus/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
mBio ; 12(4): e0079521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281390

RESUMO

Human immunodeficiency virus type 1 (HIV-1) cannot be completely eliminated because of existence of the latent HIV-1 reservoir. However, the facts of HIV-1 latency, including its establishment and maintenance, are incomplete. FKBP3, encoded by the FKBP3 gene, belongs to the immunophilin family of proteins and is involved in immunoregulation and such cellular processes as protein folding. In a previous study, we found that FKBP3 may be related to HIV-1 latency using CRISPR screening. In this study, we knocked out the FKBP3 gene in multiple latently infected cell lines to promote latent HIV-1 activation. We found that FKBP3 could indirectly bind to the HIV-1 long terminal repeat through interaction with YY1, thereby recruiting histone deacetylase 1/2 to it. This promotes histone deacetylation and induces HIV-1 latency. Finally, in a primary latent cell model, we confirmed the effect of FKBP3 knockout on the latent activation of HIV-1. Our results suggest a new mechanism for the epigenetic regulation of HIV-1 latency and a new potential target for activating latent HIV-1. IMPORTANCE The primary reason why AIDS cannot be completely cured is the existence of a latent HIV-1 reservoir. Currently, the facts of HIV-1 latency, including its establishment and maintenance, are incomplete. Using a CRISPR library in our earlier screening of genes related to HIV-1 latency, we identified FBKP3 as a candidate gene related to HIV-1 latency. Therefore, in this mechanistic study, we first confirmed the HIV-1 latency-promoting effect of FKBP3 and determined that FKBP3 promotes histone deacetylation by recruiting histone deacetylase 1/2 to the HIV-1 long terminal repeat. We also confirmed, for the first time, that FKBP3 can act as a transcription factor (TF) recruitment scaffold and participate in epigenetic regulation of HIV-1 latency. These findings suggest a new mechanism for the epigenetic regulation of HIV-1 latency and a new potential target for activating latent HIV-1.


Assuntos
Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Latência Viral/genética , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica , Repetição Terminal Longa de HIV/fisiologia , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Células Jurkat , Ligação Proteica , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/metabolismo , Ativação Viral
20.
Viruses ; 13(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946976

RESUMO

The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.


Assuntos
Ilhas de CpG , Metilação de DNA , DNA Viral , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Terapia Antirretroviral de Alta Atividade , Regulação Viral da Expressão Gênica , Genoma Viral , Genômica/métodos , Infecções por HIV/tratamento farmacológico , Repetição Terminal Longa de HIV/genética , Humanos , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...